
Chapter 1

A Parallel Implemetation of Multilevel Recursive Spectral

Bisection for Application to Adaptive Unstructured Meshes

Stephen T. Bernard" Hors_ Simon t

Abstract

The design of a parallel implementation of multilevel recursive spectral bisection
is described. The goal is to implement a code _ha_ is fast enough to enable dynamic
repartitioning of adaptive meshes.

1 Background

The R.ecursive Spectral Bisection (I_SB) _lgori_hm is one of a class of recursive bisection

methods for partitioning unstructured problems [4]. RSB is typically used as a preprocess-

ing step prior to running a unstructured-mesh simulation on a massively paraI!el computer.

A.pplJcations that change the mesh adaptively throughout the simulation, however, require

a fast method to repartition "on the fly."

Finding a partition that both balances the work of all processors and minimizes

interprocessor commuAication is an NP-hard problem. Therefore, all practical partitioning

algorithms are necessarily heuristic appro:dmations. Among these. KSB empirica3.l:."

provides the best partitions for a large set of problems, albeit at somewhat more run

time than most. other methods. I_SB bisects a graph by first finding the eigenvector (the

Fied!er vector) corresponding to the smallest non-trivial eigenvalue of the Laplacian matrix

of 3. graph. The graph could represent, for example, the connectivity between elements in a

finite-element mesh, or the connectivity between volumes in an unstructured finite-volume

mesh. The vertices of the gaph are reordered with the permutation induced by sorting the

components of the Fiedler vector, and the _aph is cut in hail, with those vertices in the

lower half of the new ordering in one part, and the remaining vertices in the other part.

The most straightforward implementation of RSB, which uses the Lanczos algorithm to

find the Fiedler vectors, is unacceptably slow for many applications. Multilevel recursive

spectral bisection (MR.SB) [1] is a refinement of the algorithm that is much faster, typically

by an order of magnitude or more, and has been instrumental in the acceptance of RSB.

The basic idea behind MR.SB is to speed up the Fiedler-vector computation by constructing

a series of successively smaller contracted gaphs that maintain the global structure of the

orig,lnal graph. The Fiedler vector of the smallest gaph is found quickly wi_h _he Lanczos

algorithm. That result is interpolated to the next larger graph to form an approx.imate

Fiedler vector, which is then refined with Rayleigh Quotient Iteration using the SYMMLQ

algorithm. This process is repeated until the Fiedler vector of the original graph is obtained.

°Cray Research Inc., NASA Ames Research Center, Moffett Field, CA 94035
tComputer Sciences Corp., NASA Ames R_e_ch Center, Moffett Field, CA 94035 ,Soy)

BAkNARD AND SZMON

/* Pal-tizion matrix M into n parrs. Assume n is a power of 2.

void pa_*-:i_ion(s_ractmatri:c *M, in_ n)

£ str_c_ matrix *MO,*MI;

if (_ > l) {

bis_cz(M);

MO = copy_subma_rix(M,O);

M! = capy_subma_rix(M,!);

par:i_ion(MO,z/2);

parzizion(M!,n/2);

remap(MO,Ml,n/2, M);

free_ma_rix(MO);

free ma_rix(M!);

}}

/* sea mask to {0,I} */

/* parzi_ion M */

/* par_izion each submazrix */

/* remap processor assiozr.,menzs*/

/* free the submazrices */

*/

FIG. I. pa_,-',i¢ion,

2 A Parallel Design for :'vIRSB

The MRSB a/gorkhm is natur.-_-tlv, recursive in two _,,a-s.:. _r;_-..._of el! i_ is a recursive

bisection method; and secondly, at a lower [evei in the control s_ruccure, k uses a recursive

mukilevel _echn.iQue to find Fiedier vectors, and hence :o deter:nine o,,.c;, bisec:ion. These

:':,¢o q,_ke different uses of recursion present different ch'ilenges (and opportunki_s) _br

parile[implementation.

2.i R.ecursive Bisection

Recur_ve-o'secuon part:t_omng a/got:thins have the s_ruc'ure _us,',ra_ed by _arz-zion.

the C code in r.=_r.'-;c,,= !. The nec-_i:ion routine "a",.,_e.¢as its mcu: a soarze ma::i:.: M and

_sig,_s...... rows o(:.,[co n processors. The bisect routine simc[v :¢-;_r-_¢o,:,,.:owe "o _;_mo'_,:.......... J

;he so: 10.'_j,_! wh]ie_herereaD,routh_epromotes ,orocessorassig._._.e:l_a:or-h_.._,_ubma:rices

o processor assignments for the parent matrix. As i stands, parzi'cicn works for any

bisection a/gorithm.

An efficient way to implement parzition on a distributed-memory ._IEv[D parallel

computer is illustrated in Figure 2. I.nitia/ly, a "task-team" ofprocessors is formed, each of

which holds some number of rows of the matrix..all processors partidpa_e in dete._m]ning

the firs_ bisection, then they split into two smiler task-teams. These t_k :earns are

responsible tbr partitioning _he two submatrices determined by the firs_ bisection after the

appropriate data has been copied. Recursive splitting proceeds down to task teams of sing!e

processors. Task teams are asynchronous: after a task team is split ks :wo ch;Idren can

execute independently because nil barriers and other global operations are restricted to a

particular task team.

2.2 Recursive Multilevel Fiedler-Vector Computation

MRSB bisects by sorting the Fiedier vector, which is computed recursively as illustrated by

the C code in Figure 3. If the matrLx is small _he Fiedler vector is found with the Lanczos

algorithm; otherwise, the matrLx is contracted, the F[edler vector of the smiler matrix is

found rec_rsively, the result is interpolated to the original matrix and improved with the

Rayleigh Quotient Iteration algorithm. UnUke par_i_:ion, the recarsive computation of

fiedl_r occurs over z single task team, as shown in Fig_e 4.

F

SI.<_[P_OCEED[NGS SERIES _AC._OS 3

Limes represent

communication patter_.

FIG. 2. MI2ffD ,_¢cursive Bisec÷.'on with As_ncAronous Task Teams

/.* Find _he Fiedler vec=or of the sp_se Laplacian matrix M */

void fiedler(szracz zazrix *M)

{ szruc- matrix xM_c;

if (M->_eqns <= min_neqns) {

lanczos (M) ;

else

M_c = con_r_cz(M);

fiedler (M_c) ;

in_erpolaZe (M_c ,M) ;

rqi (M) ;

/x M is small ancugh */

/* use L_czos */

/* M iSrrOO big */

/_ con_r_cz matrix M */

/* find zhe Fiedler _eczor ,/

/* iazerpola:a zo M */

/* refine eszimaze =izh KQI */

FIG. 3. Find Fiedler Vector.

4 BA,_._AZD AND Zh_tON

RQ /SY mQ

J RQI/SYMMH_Q

I Lanczos

Contraction

Interpolation

F:G 4. Rec:trs_ve ?,f'.dti[evei Fiedler Comp_ta_,zon

'A:e now examine _he feasibility of impiemen_ing a parallel version of each s_eD of 5his

procedure:

, The contrac=ion step builds a smaller graph by selecting a ma._imal indepe__den= se_.

of vertices and _hen connecting them wi_h a breadth-first search _krough _he ori_na!

gr._.ph., (Two vertices in the mazdmal.independent se,. are eonnec:e= in _.he con_racr.ea"'
g.,'a.ph if'and otdy if :here is a. shortes_ path in _he origiaai graph _ha_ does no_ con:v_in

a ":er_ex in the maximal independent se_.)

-tubv _'';-"a_ ' how to find a me:ritual i '_ " _' . ._,_:d.. ,_] _nown no..._e.,c..ar.._.-, e_dentL/ in p--_" _'

;.e mamg a ma.,.mat ,:,c_epen_enr_ set was for a <me tacugn_ to :oeaimYc-:':- {o ._;o

in oar_el, although _he "-_ o" :'_.e_y serial a]gori_hm is triviai.)

', r_,_ r, ,- The breadth-first search (_o connect members of the maadmal .nde_ ._de__ sa,_]

,:an be implemented with independen_ proeesse_ for every ver=ex, simpiy using

a low-[eveI %rid-hail-edge" routine that adds a single off-diagon_ end,r? :o the

Laplacian matrix. The basic idea is to gow neighborhoods from each member of

he ma:dmaI independen set, adding "half edges" when neighborhoods intersect.

and terminating when nil vertices have been expanded.

• The in:erp, ola_ion step (asimple prolongation opera=or) is easy, especially on a shared

memory system.

R.QI (P_ayleigh Quotient Iteration) is easy to implemen,, in paralld because it only

depends on BLAS1 and BLAS2 operations.

The Lanczos algorithm is more dif_cuk, _hough not impossible, topamlleiize, but :his
step require_only a.very sm,_lamount of work because the finalcontractedgraph

is tiny.Mapping _,heLanczos computation _o one processorisa,workable (ifugiy)

solutioa..Anotherpossibility_,eintendto investigateisto use Davidson'smethod,

which iaeasilyp_ail_zed.

SIA_[PP_OCBEDINGSSallIESMACROS .5

2.3 Other implementation issues.

The new C implementation of .'v[l%SB t_.kes an object-oriented approach. The code is

_eatly simpl_f[ed by using a C s_ructure to encapsulate the data szructures necessary

for representing a _aph and its a.ssocia_ed Laplacian.matrix. I'he client suppUes the

initial _aph and option_ly an array of vertex weights, then _[R.SB finds a mapping from

vertices to processors, using a number of internal buffers not of interest to the client. The

adjacency structures are represented a.s [inked lists, which provide an e._.cien_; and flexible

data structure for mana.ging _he unbounded and somewhat unpredictable requirements of

the contraction operation.

There a.re two additional operations tha_ musz be parahleHzed th_._ we haven%/iscussed:

sorting a,nd finding connected components. Several paraHe[_lzodthms are possible. In an>,

c_se, these operations require such a small proportion of _he total work that e._ciency is
not • serious concern.

2.4 Shared _lemory vs. _lessage Passing Implementations

Unlikestruc:ured-_idcodes,unstructured.'v[PPapplicationsmust support.hig_yirre_o-ular

pa:ternsofcommunication. Every processorhoidspointersno_ only _oIocaJda:a.bu_.also

to da_a on a.v_riablenumber of neighborin_processors.The essentialproblem ishow

to dereferencethese remote pointerseffic!en_iy_wir.hno redundant communication. On _-

shared-memory system such _s "he T3D :his[sscarcelymore dJr_cu/t;ban dereferencing

pointersto [oc_ data: [fa reference[s.-emotethe data ismerely read from the remote

memory, with no need forthe processortha_ _owns" _he data _o do anything..-%,message-

passing arckitecture,however, requiresan elabora.tepreprocessin_szep _o set up da_a

structuresthat c_n be used forremote sc_ter/gatheroperations.

Sparse matrL'_-vectormultiplicationillus_rates_hisproblem. .% reasonablye._cien_

sha:ed-memory version[sonly.sJJ_hdymore complex ;han a serial'z_-¢_..zon.The only _'a';

to_vrkea __p_rsematrix-vectormuir[plyofroughlythesame code complexityon a messa__e-

passingsystem, however, requiresglobalreductionsofcomp[ehty O(r_logm), where n [s

the number ofrows and ,-nis=he number of processors.This leadsto poor scalingasshov,'n

in Figure5. To be sure,this[snot the most efficientway todo matrix-vectormu/tip[ication

with message-passing:the pointisthat _he onlys_mp_¢wa.y[spoor.

_vVehave implemented a _logarithnlicallyparallel"versionof MRSB. Suppose we have

r_processors,where _ isa power of two and the processorsare numbered {0,l,...r_- l}.

F;.rstcopy the g'ra.phto allprocessors.The ._rs_bisectioniscomputed by processor0 using

the serial multilevel code. The :'esults of _hJsbisection are sen_ _.oprocessor r_/2, and _hen

processor 0 _nd processor m/2 compute the bisections of the two new subgraphs. This is

repeated recursivety until the _aph is fully partitioned.
This simple method is Lue_cien_ because _he the computation of the first biseczion

involves only one processor, the mew bisection involves only two, _nd so on. Nevertheless,

the results are encoura._ug. The table shows the run times [n seconds to partition a

_aph wi_h 15808 vertices mud 45878 edges into 4 parts (apart) and 128 parts. The

"_fultiieve[Serial" times were obtained on a Silicon Graphics indigo 2 workstation, the

_[ultilevel T3D" times were obt_ned on a Cray T3D using the logarithmically parallel

method described _bove, and the _R_B. C,'_ib" time was obtained on a 12S-vector-unit C_I5

using the C_SSL routine (parallel sin_le-!eve[RSB).

The multilevel algorithm on a sing!e workstation outperforms _he 128-processor CM5,

demonstrating the effectiveness of the mul_ilevel _pproach. The processors of the T3D

BAI,"IAKD AND SIMON

pr_duc_s,,se c Sparse Mar-zi':-Vec_-or Mu!tiDilca_-iou

"250 _

_000.

7_0

50O

250

Shared Memory /

(RSB O_ ._

.o'°"°"

_ ,..-"" (Lexacal 0r/e_izq)

_ " via G_o_ai Reduc _ o_

Fin. 5.

20 40 60

Number of P=ocessor_

Performance o� 3{a_r_z- __c_or 5[ult_plica_ion

TxBLE !

_SB Partitioning Run Times

apar_ i Multilevel Serial

!I 41 4.2
1'28J !4.4

_[ultilevei T3D t P_SB CM5

3.8 (4 processors)]

:5.0 (128 processors) ! i8.3 fi

h_ve approxima:e[y :he same performance as the Indigo 2 processor (!50 .MHz), so the 4-

processor T3D is only slight.l,.' faster. Computing hi,he." order par:i_iomn_s on ;he T3D is

near!y free. however, because r.he parallelism r_nid!': becomes .more effec:i',e as r,he number

of parti:ions increases.

3 Conclusions

An e.,_cientpar_Uelimplementationof MR.SB to support rep_rtitioning_tdaptivemeshes

[sfeasible.R.ecursivebisectionin genera[can be implemented with recursiveasynchronous

taskte_ms. Coding the recursivemultileveltechniqueforfindingFied/ervectors,including

the difficult contraction opera, tion, is facili_a.ted by the shared-memory arckitecture of

the T3D. Prdiminary testing suggests a substantial improvement in speed over carrently

av_ilzble serial and parallel spectra/partitioners.

References

[I] S. Bernard _md 1:[. Simon, Fas_ multilevel implementation of recursive spectral bisection for

partitioning unsiructured problems, Concurrency: Prac:ice and Experience, Vol. 6, No. 2, 10!-
1!7 (t994). :

[2] M. Luby, A simple parallel _Igor_Ihmfor ;he ms=real independen_ ae_ problem, SIAM J.
Comput.,Vol.15;Nol 4,November !986:....

[3] IE. Simon, Partitioning una_cZured problems for parallel processing, Compu_. Syst. Eng.,
2(2/3), 3 -148(1991).

